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ABSTRACT

A requirement for an unmanned Martian roving vehicle is an
autonomous onboard navigation system. One necessity of such a system
is to erect a reference coordinate frame and relate any subseqﬁent
motion to this frame.

The instrumentation decided upon to erect a local vertical,
ergo a referénce coordinate system, was two body mounted two-degrees-
of-freedom gyroscopes. This will supply three orthogonal reference
axes with one axis redundant. The outputs of the gyroscopes (i.e. the
gimbal angles and the gimbal angular velocities), when used in con-
junction with the components of acceleration of the rover, are a set of
sufficient conditions to completely specify the vehicle's Euler angle
rotation and translation from the initial reference frame.

This report develops the necessary equations of motion of a two-
degrees-of-freedom gyroscope where large angular excursions occur, the
relationships between the various coordinate frames employed, and the

translational equations of motion of the rover itself.
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LIST OF NOMENCLATURE

Reference Frames

(A1l of the following are orthonormal right-hand systems.)

vehicle principal axes: Bl roll axis; b, pitch axis; bg
yaw axis.

intermediate axes system (used to rotate s frame into b frame,

eg = 53)

intermediate axes system (used to rotate s frame into b frame,
f2 = e2)

inner gimbal axes

outer gimbal axes

inertial axes (fixed at center of planet)

planet axes

rotor axes

plapef's surface axes

intermediate axes system (used to rotate p frame into s frame,
Y3 = Pg)

System Variables

(A1l angles correspond to right-hand rotation.)

~ inertial acceleration of the vehicle

damping coefficient of the inner and outer gimbal, respectively
for the Q gyro
force due to gravity

reaction force of the planet on the vehicle

internal force generated by the vehicle (assumed to act in bl

direction)
planet's gravitational constant

rotor momentum about spin axis of the Q gyro

iv
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moment of inertia of gyro rotor (where j is the direction of

the spin axis in the r frame)

spring constant of inner and outer gimbal, respectively for the

Q gyro

total mass of the vehicle

vector from center of planet to the vehicle
inertial velocity of the vehicle

coofﬁinates of the vehicle in the p reference frame

Euler angles orienting the b reference frame with respect to the

s frame (Order of rotation is as shown.)

Euler angles orienting the s reference frame with respect to the

p frame (Order of rotation is as shown.)

angle orienting the éi reference frame with respect to the g

frame of the Q gyro

angle orienting the éo reference frame with respect to the b

frame of the Q gyro

angle orienting the r reference frame with respect to the éi

frame of the Q gyro

angle orienting the p reference frame with respect to the I

frame

inertial angular velocity of the j reference frame

Subscripts
vehicle principal axes
inner gimbal axes of the Q gyro

outer gimbal axes of the Q gyro

k =1, 2, 3 axes system components
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I. INTRODUCTION

Before thé turn of the century the United States plans to land an
autonomously controlled unmanned roving vehicle on the planet Mars. This
report is concerned with the study of a navigation system for a typical
vehicle. Such a system must be capable of acfing in either a passive
or active mode. To perform in the passive mode, a self contained
navigation system must be able to supply changesin translational
and Eulerian parameters from an initial reference position. On the other
hand, the rover may require a specific orientation in ordeb to perform
a mission; an active navigation scheme is, therefore, necessitated.

A stable platform navigation system was not considered due to size,
weight, and performance restrictions; therefore, attention was turned to
a body mounted gyroscopié system. The primary cobstacle in the development
of such a system is that large angular excursions of the gimbals are
enéountered.

The’éuthors formulated two questions upon which to base their
investigations; first, could gyroscopic outputs be related to system para-
meters; and second, could a physically fealizable system be obtained?
Reference 3 investigates the feasibility of a body-bound navigation system
incorporating single-degree-of-freedom gyroscopes; therefore, the authors
turned their efforts towards a system employing two-degrees-of-freedom
gyroscopes, the report of thch is presented herein.

Section II develops the relationships between the outputs of the
gyroscopes (i.e. the gimbal angles and the gimbal angular velocities),
the measured sum of the torques about the output axes of the gimbals,

and the vehicle angular velocity (‘JB)' Section III uses the results

T




of Section II in conjunction with the integrated components of

the rover's measured acceleration along its principal axes to obtain
expressions for the translational and Eulerian movement of the craft.
The final section (IV) of the report presents the conclusions and
recommendations of the authors with regard to future endeavors in the

design of a body-bound navigation system.
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II. ANALYSIS OF BODY-BOUND TWO-DEGREES-OF-FREEDOM
GYROSCOPES AS. AN INERTIAL BODY RATE SENSOR

Consider two two-degree-of-freedom gyroscopes mounted at
the center of gravity of the martian land rover. Since the vehicle
is always in contact with the Martian surface, each gyro's momentum
does not‘affect any dynamical modes of the craft. The gyros are,
however, affected hy any changes in the inertial angular velocity
of the rover.

Appendix A gives the derivation of the equations of motion of a
two-degrees-of-freedom gyro in!a 1, 2; 3 configuration. (The 1, 2, 3
designation refers to the directions of the outer gimbal output axis,

the inner gimbal output axis, the inner gimbal output axis, and the

spin axis of the rotor, respectively). These equations are:

‘/401\7‘,'5.\? = ¥ exlernal 2k D (1)

and

A6+ e, ) B, = T external 73, (@)
where ¢ B cosine. The term on the left side of the equals sign in
equations (1) and (2) represents the time derivatives of the moment of
momentum for the inner gimbal dynamics and outer gimbal dynamics,
respéctively, about the output axis of the corresponding gimbal.

Assuming all forces but the external torques on the gimbals
(a viscous damping force and a spring restmining force) are negligi-

ble, the right hand side of equations (1) and (2) expand into

Z external 7 | KJ’O( + CJ'o‘( , (3)
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where the subscriptj indexes either the inner or outer gimbal, and

the parameterjrefers to the measured gimbal angle variable under

consideration: ; for the inner gimbal or 750 for the outer gimbal.
Designating the 1,2,3 gyro configuration by the subscript A, and

combining equation (1) with (3), and equation (2) with (3) yields

- y- . = R . + . B (’4)
A, “3: 9, K(A 5{4 C(A 19‘” s
a V2
and
(& e . i (5)
écﬂ( (g‘/i ’ L0302 ) 701 K"n ¢°/J COA 7)(0” Y
respectively,

Following a similar analysis for a gyro in the 2,3,1 configuration
(see Appendix A), designated by the subscript B, the two gyro defining

equations are found to be

- 4 g J = K : g + C . gv (6)
AB L‘thts jLB \B LB (B IB )
and
8. s q = K v+ C ‘. . (7)
P € ‘s (ﬂ‘e a{"’ac) Jea “s S{°B °g ¢°B

Assuming each gyro's outputs to be its gimbal angles and its gimbal
angle rates, equations (4), (5), (6), and (7) contain four unknowns;

namely, w. , ¢, , < and @, , respectively, for which a solution
y) 3” b 3 3 30 L o b p y
' .

s A B . o
can readily be found. The quantities &I-Q s 4'? , and %“q . 5‘09 (where

the Q references either the A or B gyro) are measured directly. The
remaining constants are determined by the specifications of the exact

gyroscope used.




Equation (A13) in Appendix A can be expanded to yield the above

, and W

four variables as functions of the unknowns wy o, W
(]
: 3

‘.

with respect to the gyro configurations, A and B,

we *(w h el v (o c 8 cd,)

I, I
. S%Sé,ﬂ = (a)63 fﬂg’,S%"ﬂ)J%Cfé}, (8)

A

40302 - afé ¢ ¢o4 * ‘02,3 8 9404 ? (9)
‘LUJ(,ZB = '(w;l - 9(5’.5 5‘{08) s é:.sc 51508 + (wbz + %",3 c él/B (10)
+ !
(corg : éitayﬁa)'Séas 39és )
&'303 N CUZ[ S °g ! %3 c °g J (11)

8

where s = sine,

Equations (8), (9), (10), and (11) contain only three unknowns,
so that both solution and verification are possible. The inertial
angular velocity components of the vehicle along its principal axes are

found to be:

o =[/ w{‘._gl‘ cl - s o (E_s¢u”—w‘,fgom)
< ¢ W % VA

61‘ C’,; <7‘,” “ A
. : T T
et h, 0 bied, (TUp—=)
+ 47;, s gé” 5,52.” c){oﬁ] , (12)

(13)
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IIi. DESIGN OF A NAVIGATION SYSTEM INCORPORATING TWO
BODY-BOUND TWO-DEGREES-OF-FREEDOM GYROSCOPES

The navigation system presented in this report has been
investigated in terms of its acting as a passive system. This implies
that, given the initial attitude and position of the rover, the body-
bound system will continuously update this data as the rover traverses
the planet. It is a simple matter, though, to show that the final
results are applicable to both active and passive modes of operation
of the systems. |

Figure 3 shows the location of the rover in the 51, 52, 53
reference frame (centered in the planet, and rotating with it) as
denoted by x, y, and z, respectively. It is, however, advantageous

to describe the vehicle's position in terms of spherical coordinates,

X = AR\,,QAC}Q s (15)
y = Rsgsi - ae
and
7z = Reso . . (17

£

where R equals the radius of the planet and is assumed constant.

.,

ﬂL’ and ﬂL in terms of the location and velocity of the vehicle.

Equations (15), (16), and (17) can be used to solve for 7LL,

Therefore,
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g - Cf'(:ﬁg’)' y (18)

N
"
)
s

(19)

}f = Z‘-.g)y_/(%) ’ (20)
and
. >y - yX
}f = JRZ‘Y . . (21)

The velocity components in the p frame, %X, y, and z; are
determined by using the integrated outputs of the onboard accelerometer
sensors in conjunction with equation (C18) from Appendix C. These
sensors measure the components of the rover's acceleration in the 51
and 52 directions. Thefefore, the two expressions generéted by

equation (C18), when used with equation (C3), are

»

X = f(?é,y,z)\/b v A ¥ &

J by ) L) T4y

y T g(ry v, Al b 8, e

and

oAb (v x5, 4 . E), e

where the functional relationships, f, g, and h, are not explicitly

Y 4

LS B 3

shown. Equation (C#) is used to verify that all velocity and accelera-
tion values agree.
The final equation used in determining the attitude and position

of the vehicle is the translation equation, (C20), as derived in

Appendix C. This equation expands into three expressions. These
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three relationships when used in conjunction with equations (22), (23),
and (24); along with the three acceleration relationships, are a set of
nine equations in nine unknowns, which can be solved to uniquely

determine the rover's attitude and location.

-,




Iv. CONCLUSION

This report demonstrates that for the first time an unambiguous
representation of the vehicle's orientation can be found relative to .
some reference system. Using the equations of motion of a two-degree-
of-freedom gyroscope the vehicular angular velocity was found as a
single valued function of the measured gimbal angles and the time deri-
vatives of these angles. This result was then used in conjunction with
the acceleration (as determined by onboard acceierometers) and %he
translation of the vehicle to obtain expressions for the components of
the vehicle's velocity. Upon expressing all quantities in terms of the
inertial reference coordinate frame, a set of nine equations'iﬁ‘nine
unknowrs results.

A simulation of these equatioﬁs on an IBM-360/50 yields the
result fhat a unique set of the vehicle's translational, and Eulerian
rotétional parameters can indeed be found.

Further work in this area should be directed along the following

two lines: an error analysis and a breadboarding of the unit. These two

investigations would transfer the unit from the realm of mathematical

feasibility into a realizable, functioning unit.

10
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APPENDIX A

Derivation of Equations of Motion of a Two-Degrees-
of-Freedom Gyroscope

The relationships between the orthonormal coordinate systems

based in the rotor, the inner gimbal, the outer gimbal, and the body

(as shown in Figure 1) can be used to define the dynamics of the gyroscope.
Consider first the rotation of the r coordinate system, fixed

in the rotor, with respect to the éi frame, fixed in the inner gimbal.

This rotation is described by the matrix equation -

(o~ - p—

P et st o] |3 ]
f; = ‘S}f C}f 0

Ln3 O O |

<oy Q:g

N

¢ ) (A1)

Co
o

where s = sine and ¢ = cosine. The velocity relationship between

the r and éi frames is

.
&S, = Gy, * ’¢r 3‘(3 , : (A2)
where ujis the angular velocity éf the j coordinate system with
réspect to inertial space, and )ijf3is the relative aﬁgular
velocity of the two frames. ‘
There are two additional dynamical modes of the gyroscope:

a) the rotation of the inner gimbal with respect to the outer
gimbal (éo coordinate system); and b) the motion of the outer
gimbal with respect to the body (b frame). FEach mode can be
described by two equations of the form of (A1) and (A2): a

matrix frame transformation and the inter-frame velocity
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relationship.

The equations describing the motion of mode a) are

[ 3] Y
"2 = 0 / o
q s&. (o] c
Lj(s ‘ | [4 t‘!
and
w, . = o + éi = .
Ji “So tJ%

And the mode b) relationships are

Qo1 Coy o
(»o ~°
]
—
1
“n N
o~ B
2] %)
N

— j‘;l-}
Je,

Léjo;_

1 ér~| Dl

o—
w

and o
4 - . - . -
ubo Iy 9& b,
Expanding equations (A2), (Au),land (AB) gives
~ "
@,
Fona] e - [
w
3
- J
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(A3)

(An)

(A5)

(A6)

(A7)
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. Fwﬂ < : - —C‘DJ 2, ]
[9“) 3"2 (3"3] wf’ ‘2 i , [j >°' § 2 §°3] L%"z
[0 |“Ses

and

(,Ojo, - LJ!’:
T 9_"9_ 5"4] OOJ% B [6' ba L31 b2
_w‘jos J '.L%} J

*+ [[): Ez -3] o ° e

and v, as functions of or to

It is desirable to express t-'(JJ o A

c‘l:
facilitate later work. The first step is to express all inertial
angular velocities in the r frame., Substituting equations (A8) and

(A3) into equation (A7) gives

» 1
e, .,
- r - (V] = o 5 3
[ f‘, rZ rs ] 2 [3"1 cj"z 3°3 ] LDJOL
= ¢,
s j"j |




15

o o o s8][0]
cfG g @] l4] v (5 Fun]le e |lopew
" 2 3 i 2 U3
. _ ' g .
O ] Jél (& < ¢J _}éj
Now substituting equations (A5) and (A9) into equation (A10) produces
- - ) A
wf‘, (A)[, ¢o
rl rz —3] wr‘z = [bl 2 bs] ('Jb?_ * [bl bz 3] o
_w'”s_ ey, o |
[ / o) o i [ o ]
+ ltl;, 2 bs] ®) C &, —5;150 é
O 5}50 c/&o O
L. , . L .
/ o o (o o se| |o]
1 bz 31 % €% 'S?{o o / o O . (A11)
syfo c @, -s & O cd, V,.J
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All terms containing ¥ in equations (A7) and (A11) will be -
equal when they are expressed in the same coordinate ‘system. Upon
equating (A7) and (A11) these terms would be eliminated. Thefore,

¥, can be set equal to zero immediately to facilitate the mathematics.

Hence,

[9@' §c‘2 ébtl g s = l:b' bz 3] co62 . ¢9:.(-_ L a12)

Solving for g, as a function of b in equations (A3) and (A5), and
g for g,

applying this result to equation (A12) yields

-Lo\’. i _Cgt' 59‘.55{0 -3 9"6%0
“
"inz = | O c %o o J%,,
p C‘)(j,'J‘ __69( _C’gt's/do (;Q(~c;lod
W B
. e, o+ B4 5 (A13)

h,
&
2

&=

where the vectors have been eliminated.
Secondly, to obtain the aﬁ°equations (A10) and (A11) are equated

with }ﬁ‘; 0 and 9‘ = 0.



_ 3 .|

ru)ﬂo, QB. + 90
[jo‘ 9—01 503] QJuz_ = [b ! bz 3] wb&
, wJ"s 053

Using equation (A5) to transform (A14) into the b frame and

eliminating vectors yields the desired result,

o] o W + 5
a%o' / b,
6;501 ) © e % s #o ‘L%z

-$ o
ng 05— B O ° < o B 63 |

The dynamics of the gyro can be defined by expressing the

momentum of the gyro in both the inner gimbal frame and the outer
e

gimbal frame. The three following assumptions will be employed in deriving

s

these equations:
1. The rotor revolves at constant speed ( }ﬁ = 0).

.

2. Only momentum terms containing }i are appreciable

(i.e. the momentum contribution of the gimbals is

negligible).

17
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3. The gyro rotor has a symmetrical mass distribution.
Consider the inner gimbal dynamics,
Hl‘orol‘ = [ - ‘,'J,, . (A16)
Expanding equation (A16) and noting that 53 is the spin'axis of the
rotor gives '
T O O
3p
Hr'oror = [l ri’- G] 3n O
o o I,
" o
. CJ”~
. [;:‘ ~ ;3] o, |, D)
A)_gr

In transforming equation (A17) into the éi frame, the rotor's inertia
does not change due to the symmetry. Substituting equation (A7) into

(A17) and noting symmetry yields

‘ i s, O o i hj" [
Hroror = [35‘ g‘;z g.g:l o 3n §Lz
O -‘-
i o) )

18
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= = = O (a18)
¢ [‘; 3‘1. La] Jep . T
Doy * %r_}

Expanding (A18) gives

EOR T T S

roror (_’ r

+ I3r(w¢ + %)é: o (A19)

5 3
The time derivative of equation (A19) is
ﬁroro,_ = 3 ex7Zrnal 7 - §¢2 axsis
hence,
— = ° - . - C:’J + ‘_
ro7or [3ra{7Ll 36‘ * I,— wgd 8"3 ” 1';“( 33 }i ) ¢
o | : _
Je Jee Js .
2, . o, . (29 (A20)
+ J(.’ Jgra J‘3 *
O A T A C R
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Since theiéi and éi axes have no gimballed freedom, only ithe
1 3 '

éi component need be considered. Applying assumptions (1) and (2) to
2

simplify equation (A20) gives

—/"‘)3;, 5 = ) external 7 — g axis , (A21)

(2 53

where

Now consider the outer gimbal dynamics. Substituting equation

(A10) into equation (A20) gives

o ol fa
Froror = [Jor Gu G | | @ B @ |5u
A ° I"’". 1.9”3-
N P Yea |

(353 |94 | o
|G 7oA

upon expanding

v = L (9 + %s8)§, + I

' * C -
: (A23)
+ Z (g, v Keadg, o
Taking the derivative of equation (A23) with respect to time

yields
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/7.;’070,_ = Z exlernal 7 9_0’ axis ,'
or
rorer ~ B (9, * Kb<8) 3, (A24)
[}

* ];,(@Jo;‘g;) Iy ¥ D, (‘o(j‘;j* ¥as2) %,

(701 j;z jc‘s
+ Lej% . 6&59‘ . a%ﬁ3 .

R I A S C R >

Applying assumption (2) and noting that only the éo axis component
1
is of concern, this being the output axis of the gimbal,yields

Ac,g.(,;gf Fw, ) T E exTernal 70 g, axis. (425)
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APPENDIX B

DERIVATION OF INERTIAL ANGULAR VELOCITY
WITH RESPECT TO THE PLANET FRAME

B1. Derivation of &}b as a Function of &as

The pitch, ¢9b; roll, qéb, and yaw, ¥, ; of the body is an Euler

b
sequence that can be used to define the orientation of the b frame with
respect to the s frame. The rotation sequence is arbitrary; however,
it should be chosen to simplify mathematical manipulations. Yaw is
the first rotation since steering will be the main angular movement of
the vehicle. The second rotation in the sequence is pitch, and the last
is roll.

In order to orient the b frame with respect to the s frame, two
intermediafe frames, e and £, are introduced (see Figure é). As in
Appendix A, two coordinate systems can be‘related using a matrix frame

transformation and the corresponding inter-frame velocity relationship.

Therefore, relating the e and s frames,

T B - - -
€, ¥  sY o .
éz = =S/ ¥/ o '; , (B1)
Léﬂ L © © I |
and
c:Je = c:)S + )i 6—3 . (B2)




Relating the f and e frames,

1

)

J
i

o~

r’
al wh!
G
o

and

O T w, ot

Finally, the equations for the remaining two frames are

O

c;z{6
‘5%6

“r

-s &,

o

cb

+ 4

]

-

wht G

Expanding equations (B2), (B4), and (B6) gives

b, /
. k32 = fo)
b, o
and
o, =
wel
[e, e, e3] We | = ‘:3“'
o ‘
| 2
W,
[ [} P4 3 ] OOFL = [cl
129)
f3 o~

N
hdl]
el

1

N

dﬁo

wb"
[ |
Q

o

° 0 '

FC) A

(B3)

(BY4)

(B5)

(B6)

»(B7)

,(88)
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fon]
NOﬂ
o
Radi
~°~ -
1
';*7|'
oHi
Wwhy
——

respectively.

‘hgj

3
oy
+

£

Substituting equations (B3) and (B8) into equation (B9) yields

[E), Z)z E’;J ws; = [:é, >, €,

IO"I'
]
~
Reall
__J
&
NS
T
a—
i
Rl

(,f"\l'
O
N

+
' 541'
Wi
d’\l
|
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(B9)
3
d
O
%
@)
%
. (B10)




or

Solving for § as a function of b in equations (B1), (B3), and (B5),

O
Q 5 A
/ o
o Cgé

and using this result in equation (B12) yields

25

(B11)

(B12)
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4ok <4<, -4

° S%bSJZC}é -C‘?{AS}({ s}fjésé + cﬂ,‘ c,yé \s‘;zi CQA
Ch bk spish chsak el el

J
LQ,' - % S}f + é c)f’ CC%
. @, + 4 ‘fe + ¢ \,}f <4 . (B13)
L_CO{S‘ Y }f B %6 SA N
Eliminating the vectors and simplifying equation (B13) gives
- 4 — . - » -
wb, ¢6 - 71{596 ‘ (")5'
= ’ ' (B14)
“Jbz = ??,C?{b + )ésgléc:% + Mb/s “)s‘2 ’
& - &s '
!_‘0"3_ L}éaéc % 66?& ) OD{;J
where
i (o 96 c}é ol t% o‘}ﬁ
Mb/s = S;z{éséz,c)i - cy‘As}i 6725%5}5 +C7{CX6
Cfé’sé c)f + \Syé S}i C%Jﬂé‘jyé —;éc}i
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B2. Derivation of &y as a Function of d?

Vectors in the s frame can be expressed in the p frame
through a sequence of two Euler rotations. The first one is chosen
to be a longitude ( )i) rotation; and the second, a latitude (QL)

rotation (see Figure 3). The vector 51 is tangent to the great circle

whose plane is located %L from 51 ; and s,, 1is tangent to the minor

2

circle defined by the declination, 6_, from the pole; while s, lies along

L’ 3

the local vertical.

As done previously, an intermediate frame, y, is introduced such

that
- 7] [~ ] [~ -
] c&i © =S 84 /
< = \/ 15
2 O / o ‘x y (B15)
3 g o <&l |J
L L . -
and

(B16)

[, | .Y s¥ o
j’z = _‘S)f c}f
tj@ o o /

- — -

rﬁ
IrCAi]

The angular velocity relationships corresponding to equations

(B15) and (B16) are

S5 = o ) o (B17)
“ T Yy LY
and
o = @ ot ¥ e o, (B18)
respectively. ‘




Expanding equations (B17) and (B18) yields

and

Substituting equations

IJA['
N|
VI

e

or

G s)

s

L

O

¢

rv
(.f"&
L

- [ 2]

= [P P 4]

a};1

| [

“rs

o (B20)

(B16) and (B20) into equation (B19) gives

N. )‘;\' h%\

1

AR

y) , (B21)

(B22)

°
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Solving for § as a function of p in equations (B15) and (B16), and
using this result in equation (B22) produces
-.6051T céc)f cé&}f -—Jﬂj
[5, s, %:I «w | = [s“, 5, 5'3] -s¥ ¥ o
L(A){s ‘je(‘)ﬁ .565)5 Cé ]
e -
u)P' -4 S)f
o |w, 4K . ' (B23) -
('Jl?s * }f
Eliminating vectors and simplifying the above result gives
@, Y54 - ¥s4
% IR I A A e
| “% Yed +¥ed




APPENDIX C

Derivation of Translational Equations
of Motion of the Rover

The location of the rover with respect to the 51, 52, 53 coordi-
nate system 1s designated by x, y, and z, respectively. (See figure 3)

The position of the wvehicle is defined to be

-

R = xp, + yp: *2ps (e

which leads to the scalar constraint equation of

2
R = x* o+ \y’- + Z* B (c2)
where R is the radius of Mars and is assumed constant. (The height
of any hill that the rover traverses is considered negligible with

respect to R.)

The first and second time derivatives of equation (C2) are

X% + \)/j v+ ¥> =0 , (c3)

and

xF v e yyryt ¥ o2 =0 , (@

respectively. Equations (C3) and (C4) are used in conjunction with
the velocity sensors and will be treated in greater detail later.
The velocity of the vehicle is the time derivative of equation

(C1) with respect to inertial space

v = R (cs5)

or
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v = ?2/3.*‘91’“2:’3 ol @ @ |, (c8)

Since the p frame has only one degree of freedom with respect to

inertial space,

“r °

wfz = o 5 (c7)
wf’s %
T I

L]
where }?k is the rotational rate of the planet.
. Substituting equation (C7) into equation (C6) and simplifying
yields
VoS Gy RIp G K v ER L
The time derivative of equation (C8) with respect to inertial space

ylelds the acceleration of the vehicle,

& s (GFgEP ¢+ (G EE)R R

°(09)

-~
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Substituting equation kC7) into equation (C9) and collecting terms
gives the total inertial acceleration of the rover.
, (c10)
a = [ }L(Z]-r?"}é)]f) [ (Z?Z \)/}l) o]FZ'+ 2153 .
Newton's second law of motion can now be used to define the

translation of the vehicle,

F = Ma | (c11)

where M is the total mass of the craft. The three forces acting

on the vehicle are: the force due to gravity, fg; the reaction

force of the planet on the veHicle, ?r; and the internal driving
force of the rover itself, fv’ where it is assumed that fv acts along

the 51 axis of the vehicle (see Figure 4). Therefore, upon expanding

equation (C11) one obtains

—

R R il AR
[j+},{(272~y}{)]§z + "_} (c12)

When the vehicle is at rest, ?v = 0, and %, y, and z are

constant (all time derivatives are also zero). Using this information

in equation (C12) gives

e Bm MO=Th -y X)) @)

Substituting equation (C13) into (C12) produces

Fos M2 Eip e (5 - 2XA) R

+ gfg] . (ciu)
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In order to use equation (Ci4) in later work, it is necessary to

express both sides of the relation in the same coordinate system, As

stated previously,

F, = F, b, - (c15)

v

Since ?v acts in only the -51 direction, the mathematics is simplified
by expressing equation (C14) in the p frame.
Using equations (B1), (B3), and (B5), the matrix transformation

relating the b and s frame results.

o)

c&c¥ cl s}
2 5%6 5%C}f -cé sy, 5?/43‘547‘}5/ * C?&‘}é

ol
0

b, chosfck +sd, s, gk byt ~ s,k
S L
=4 | |5]
S8 s, (c16)
C?(AC}{ ‘S:J
Using equations (B15) and (B16),
~_ — : s —
, g% cl =4 P
y —Z - ,S}f . c }{ o [5& . (C17)
3, s& cf Jes}f cd 'D-JJ
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Equations (C16) and (C17) can now be used to solve for b as a
function of p.
b 3
_ lf‘ = Mb/P ,52 , (c18)
_b3 | | P- |
where
My = g K@l ~eg st of - 450k
My (D= cbelcls) +egds)fck ~s4s8s5)
MB/P(1,3)= clc¥sb 548

M, @)= cb X (4sded, ~cds¥)
SR (A Gyt eA )t sheds g )

My, 2= cd <) (G5 e) - chsh)
+L’}{(é‘¢ Sﬂ s)/ + c;é }{) + 5;46c,4>5c’2$)f)

My, (207 =54 (s spe X = chsh) + c@siheq

MB/P(3J1)=c4c){(c¢25%c}i - 5?465)f) - s ¥
‘(C‘5£65%5)f -syﬁé o)ﬁ) + ,sé C}fcf/&CéZ S

]Vlb/P(B)Z):c,es}f(césec}f + 5/@2 S}i)
+c_}f(c¢6545}{$ - S;zic}f) +f45}{<‘/{<£6) J

J

and

/(33)~‘55)(c 59( + 5% }/) * cﬁc cﬂ‘
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Substituting equations (C15) and (C18) into equation (Ciu)

produces

E’[M%(.),)P‘, + Mh/P('JZ)Fz + M%(l,z)]s}}
= M[()’Z -.2}'{)’/){3, * *Z}{<‘72)Fz*é}53](c19)

Simplifying equation (C19) and clearing of vectors yields and desired

translation equation,

Cé}c}ic /-C’I/I: - c.ﬂés}i.s'%: - S%J&LC}{‘LT

F. ,

M |SGeHh v cqsVel ~shsasF | =
o bl 58 T sbc8, i

x R
y TZEF| L (c20)
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Two-Degrees-of-Freedom Gyroscope.

FIGURE 1.




FIGURE 2.

Rotational Scheme:

% frame to b frame.
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/ A x\:'s of Rotation

Vehicle

I3)f33

FIGURE 3. Relationship of Martian ‘Land Rover
with Respect to Planetary Reference Frame
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FIGURE 4,

Relationship of Martian Land Rover
with Respect to Surface
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